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Abstract
In this work we present the results of theoretical analysis of magnetic quantum oscillations of
the velocity and attenuation of high frequency ultrasound waves traveling in
quasi-two-dimensional (Q2D) conductors. We chose a geometry where both the wavevector of
the longitudinal sound wave and the external magnetic field are directed along the axis of
symmetry of the Fermi surface. Assuming a moderately weak Fermi surface corrugation, we
showed that the oscillating correction to the sound velocity may include a special term besides
an ordinary contribution originating from quantum oscillations of the charge carrier density of
states at the Fermi surface. This additional term is generated by a ‘phase stability’ resonance
occurring when the charge carrier velocity in the direction of the wave propagation equals the
sound velocity. The two oscillating contributions to the sound velocity are shown to differ in
phase and shape, and they may have the same order of magnitude. The appearance of the extra
term may bring about significant changes in magnetic quantum oscillations of the velocity of
sound in Q2D conductors, especially at low temperatures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is common knowledge that quantization of the conduction
electrons’ motion in strong magnetic fields gives rise to
oscillations of the electron density of states (DOS) at the Fermi
surface (FS) of a metal. These quantum oscillations generate
several effects such as de Haas–van Alphen oscillations in
the magnetization and Shubnikov–de Haas oscillations in
the magnetoresistivity. The above effects were repeatedly
used in studies of the FS geometries and other electronic
properties of various conventional metals [1]. In the last
three decades quasi-two-dimensional (Q2D) materials with
metallic-type conductivity (intercalated compounds, organic
metals and some others) attracted significant interest from
the research community which resulted in extensive studies
of their electronic characteristics. These materials reveal
strong anisotropy of the electrical conductivity which reflects
their layered structure. Conducting layers are rather weakly
coupled to each other, so the charge carriers energy only

slightly depends on the momentum projection on the line
perpendicular to the layers. Correspondingly, the Fermi
surfaces of Q2D metals could be described as systems of
weakly corrugated cylinders [2–4]. Again, magnetic quantum
oscillations were widely used for obtaining important band-
structure parameters. A theory of de Haas–van Alphen
and Shubnikov–de Haas oscillations in Q2D conductors is
proposed in several works [5–9].

So far, less attention has been paid to quantum oscillations
in the elastic response of a Q2D metal to an external
deformation generated by a traveling sound wave. Such
oscillations in the sound velocity and attenuation are known
in conventional metals. Studies of these oscillations were
started by Gurevich et al [10] who first predicted the effect of
giant quantum oscillations in the ultrasound attenuation; these
studies were subsequently extended in several works [11–13].
Magnetic quantum oscillations in the sound velocity and
attenuation were repeatedly observed in 3D metals [1].
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It has been shown both theoretically and experimentally
that the specific geometry of the Fermi surfaces of Q2D
metals may cause significant differences in the size, shape
and phase of the de Haas–van Alphen oscillations compared
to those occurring in conventional metals. Therefore, one
may expect similar features in the elastic response quantum
oscillations in Q2D conductors to occur. The purpose of this
work is to analyze these features. We concentrate on the
case of high frequency ultrasound waves (ωτ > 1 where ω

is the wave frequency and τ is the scattering time for the
charge carriers). The high frequency range is chosen because
it provides opportunities for a richer and more complicated
structure to be revealed in the oscillating corrections to the
ultrasound velocity and attenuation.

2. Main equations and results

When a sound wave propagates through a metal, the crystalline
lattice is periodically deformed, which brings changes to
the electronic spectrum. These changes could be allowed
for by introducing the deformation potential but here we
omit them for brevity. Besides, the conduction electrons
(charge carriers) affect the crystalline lattice by interaction with
the self-consistent alternating electric field accompanying the
sound wave as it travels in the metal. As a result, electron
contributions appear in the expressions for elastic constants
of the metal. When a strong external magnetic field is
applied, these terms include corrections describing quantum
oscillations in the elastic response of the metal to the sound
wave.

To analyze the magnetic quantum oscillations in the elastic
response of a Q2D metal we adopt the commonly used simple
approximation for the charge carriers spectrum:

E(p) = p2
⊥

2m⊥
− 2t cos

(
πpz

p0

)
. (1)

Here, the z axis is taken to be at a right angle to the conducting
layer plane, p⊥ is the momentum projection in the layer plane,
and m⊥ is the effective mass corresponding to the charge
carriers motion in this plane. The parameter t in equation (1) is
the interlayer transfer integral, and p0 = π h̄/d where d is the
distance between the layers. When a quantizing magnetic field
B is applied perpendicularly to the layers, the Landau energy
spectrum of the charge carriers has the form:

Eσ
n (pz) = h̄�

(
n + 1

2

)
+ σ

2
gh̄�0 − 2t cos

(
πpz

p0

)
. (2)

Here, � is the cyclotron frequency, �0 = β B , β is the Bohr
magneton, σ is the spin quantum number and g is the spin
splitting coefficient (g-factor).

We consider a longitudinal ultrasound wave traveling
at a right angle to the conductivity layers (in parallel with
the magnetic field) with frequency ω and wavevector q =
(0, 0, q). An expression for the wavevector of the sound wave
can be written as follows:

q = ω

s
+ �q, (3)

where s is the speed of sound in the absence of the external
magnetic field, and �q determines the magnetic field induced
corrections to the velocity shift �s and attenuation rate 	:

�q

q
= �s

s
+ i	

2q
. (4)

Using the general equations for the magnetoacoustic response
of a metal [14, 15] we can obtain the following expression for
the correction �q:

�q

q
= − N2

2ρms2

1

η
Y, (5)

where ρm and N are the density of matter in the lattice and the
charge carriers density, respectively, and η is the charge carriers
DOS on the Fermi surface in the absence of the magnetic field.
The function Y describing quantum oscillations of the elastic
response has the form:

Y = 1

4π2h̄λ2

1

η

×
∑
n,σ

∫ ∞

−∞
dpz

f σ
n (pz) − f σ

n (pz − h̄q)

Eσ
n (pz − h̄q) − Eσ

n (pz) + h̄ω + ih̄/τ
.

(6)

Here, f σ
n (pz) is the Fermi distribution function for the

quasiparticles with the energies Eσ
n (pz), and λ is the magnetic

length.
In further consideration, we assume, as usual, that the

cyclotron quantum h̄� is small compared to the chemical
potential of the charge carriers μ. Then we employ the Poisson
summation formula:
∞∑

n=0

ϕ

(
n + 1

2

)

=
∫ ∞

0
ϕ(x)

[
1 + 2 Re

∞∑
r=1

(−1)r exp(2π ir x)

]
. (7)

Using this formula we may present the function Y as a sum
of a monotonic term Y0 and an oscillating correction Ỹ . To
proceed in computations of the oscillating function Ỹ we
change variables from n, pz to E , pz . Using these new
variables, the integration over pz is to be performed within
finite limits determined by the minimum and maximum values
of pz at a given energy E(pmin(E) < pz < pmax(E)). These
values are specified by the isoenergetic surfaces geometries
within the Brillouin zone. Assuming that the frequency of the
sound wave is not too high (h̄ω � m⊥s2) we may expand the
functions f σ

n (pz − h̄q) and Eσ
n (pz − h̄q) in powers of h̄q and

approximate Ỹ by the expression:

Ỹ = − m⊥
2π2h̄3

1

η

∑
σ

∞∑
r=1

(−1)r
∫

dE
d f σ (E)

dE

×
∫ p0

−p0

dpz
vz

vz − s − i/qτ
cos

[
r
λ2

h̄2
Aσ (E, pz)

]
, (8)

where the longitudinal velocity vz is given by

vz = ∂ E

∂pz
= 2π t

p0
sin

(
πpz

p0

)
(9)
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and Aσ (E, pz) is the cross-sectional area of the corresponding
constant-energy surface. To properly estimate the integral over
pz in equation (8) we extend the integrand over the upper
half of the complex plane, and we choose the integration path
including the segment of the real part axis −p0 � pz � p0

and the circular arc with the radius p0. The value of the
integral crucially depends on the contribution from a pole at
vz = s + i/qτ which may be situated within the integration
contour.

Strong anisotropy in the transport characteristics of
Q2D conductors implies a pronounced difference between
the quasiparticles velocities in the layer planes v⊥ and the
longitudinal velocity vz . Due to the smallness of the transfer
parameter t , the longitudinal component of the charge carrier
velocity on the Q2D Fermi surface may take on values
significantly smaller than those typical for Fermi velocities
in conventional metals. For a weakly warped Fermi surface
(2π t/p0 < s), vz is smaller than s and the integrand is an
analytic function over the area within the integration path.
Then the value of the of the integral over ‘pz’ in equation (8) is
solely determined by the contribution from the arc. Computing
the latter we keep in mind that due to the relative smallness of
the longitudinal velocity the ratio s/vz in Q2D conductors may
take on greater values, than in usual 3D metals, and we may
expect an inequality s

vz

√
μ/h̄� > 1 where μ is the chemical

potential of the charge carriers, to be satisfied when vz takes
on its maximum value v0. Stipulating that s

v0

√
μ/h̄� > 1 we

may approximate Ỹ as follows:

Ỹ ≈ − α(ql)2

(1 − iωτ)2

∞∑
r=1

(−1)r D(r) cos

(
2πr F

B

)

×
[

J0

(
4πr t

h̄�

)
+ J2

(
4πr t

h̄�

)]
. (10)

Here, α = m⊥ p0

π2
1
η

; l = v0τ is the mean free path of the charge
carriers along the normal to the conducting layers; J0,2(x)

are the Bessel functions; F = cA/2π h̄e; A is the mean
cross-sectional area of the Fermi surface. The damping factor
D(r) includes the effects of temperature, scattering and spin
splitting.

The obtained expression (10) describes magnetic quantum
oscillations in the sound velocity and attenuation originating
from the DOS oscillations in the strong magnetic fields. An
explicit expression for the oscillating part of �q may be
written out by substituting equation (10) into (5). Oscillations
in the velocity of sound described by equation (10) are shown
in figure 1 assuming that the effects of temperature and
scattering are moderately small. The oscillations look like
a sequence of well distinguishable peaks separated by nearly
flat regions. As the FS warping decreases, the peaks become
sharper and lower in magnitude. We remark that the function
Ỹ as given by equation (10), goes to zero when the FS becomes
purely cylindrical (t → 0). This is a reasonable result
because at t = 0 charge carriers cannot move between the
conducting layers in the Q2D metal and, consequently, they
cannot respond to the sound wave traveling across the latter.

Now, we consider the case of a more pronounced warping
of the Fermi surface (2π t/p0 > s). Then the integrand in

Figure 1. Magnetic quantum oscillations of the velocity of a
longitudinal ultrasound wave propagating along the symmetry axis of
a weakly corrugated Fermi surface in a Q2D metal. The plotted
curves are described by equations (5) and (10) assuming that
F/B0 = 300, B0 = 10 T, t/h̄�(B0) = 0.1 (dashed line) and 0.04
(solid line).

the integral over ‘pz’ in equation (8) has the pole within the
contour of integration at pz = s + i/qτ . Correspondingly, the
oscillating function Ỹ equals the sum of the residue from the
pole Ỹ1 and the contribution from integration over the arc Ỹ2.
The term Ỹ1 can be written in the form:

Ỹ1 ≈ −απ i

2

s

v0

∞∑
r=−∞

(−1)r D(r)

× exp

(
−2π ir

F

B

)
cos

(
4πr t

h̄�

√
1 − s2

v2
0

)
. (11)

The expression for the remaining term Ỹ2 depends on the
value taken by s

v0

√
μ/h̄�. Assuming s

v0

√
μ/h̄� > 1 we

obtain Ỹ2 in the form closely resembling DOS oscillations in
a quantizing field:

Ỹ2 ≈ α

∞∑
r=1

(−1)r D(r)J0

(
4πr t

h̄�

)
cos

(
2πr

F

B

)
. (12)

For a noticeably warped FS (4π t/h̄� > 1) we may
appropriately approximate the Bessel function and present Ỹ2

in the form resembling the expression suitable for 3D metals:

Ỹ2 =
√

h̄�

8π2t

∞∑
r=1

(−1)r

√
r

D(r)

[
cos

(
2πr Fmin

B
+ π

4

)

+ cos

(
2πr Fmax

B
− π

4

) ]
, (13)

where Fmin and Fmax are associated with the FS minimum and
maximum cross-sectional areas Amin and Amax, respectively.
The origin of the term Ỹ1 is rather more complicated, and its
occurrence needs some particular explanation.

As follows from the form of the charge carriers spectrum
in a strong magnetic field given by equation (2), the
quasiparticles energies corresponding to their motions in the
planes perpendicular to the magnetic field are quantized.
Therefore, at a certain magnitude of B the longitudinal part of
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Figure 2. Quantum oscillations in the attenuation of the longitudinal
high frequency sound propagating along the symmetry axis of a
moderately corrugated Fermi surface in a Q2D metal. The curves are
plotted assuming that F/B0 = 300, B0 = 10 T and t/h̄�(B0) = 4.

a quasiparticle energy at the Fermi surface can take on values
belonging to a set of intervals with widths of the order of the
thermal energy kT (k is Boltzmann’s constant). This leads
to a similar distribution of possible values of the longitudinal
velocity vz = ∂ E/∂pz at the Fermi surface. Within the
low temperature limit (T → 0) the intervals are reduced to
points, so we obtain a discrete set of possible vz values for
every magnitude of the field B. Quasiparticles on the Fermi
surface may absorb phonons provided that the conservation
laws for both energy and momentum are satisfied. This occurs
when the longitudinal velocity vz coincides with the speed of
sound s. At certain magnitudes of the magnetic field we may
find vz = s among the allowed values of the longitudinal
velocity, so the relevant quasiparticles may absorb the phonons.
This happens regardless of the value of the electron velocity
component v⊥ perpendicular to the ultrasound wavevector q.
To understand this situation one may recall a semiclassical
Landau damping mechanism providing the effective absorption
of the energy of electric field associated with the sound wave
by electrons moving ‘in phase’ with the wave. The ‘in phase’
motion occurs when the electron velocity component along
the wave coincides with the speed of sound because in this
case the electron is consistently seeing the same electric field
irrespectively to the velocity component v⊥ which is associated
with the electron motion in parallel with the wavefront.

A slight change in B shifts all of the allowed values of
vz and leads to a situation where there are no charge carriers
at the Fermi surface capable of phonon absorption. Varying
the magnetic field magnitude we successively satisfy and
destroy the ‘resonance’ conditions for the phonon absorption
generating the giant quantum oscillations in the ultrasound
attenuation. Such oscillations are described by the imaginary
part of the function Ỹ1 which could be rewritten in the form:

Im Ỹ1 = −απ

4

s

v0

∞∑
r=−∞

(−1)r D(r)

×
[

cos

(
2πr F+

B

)
+ cos

(
2πr F−

B

) ]
. (14)

Figure 3. Oscillating corrections to the velocity of a longitudinal
sound wave traveling along the symmetry axis of a moderately
corrugated FS of a Q2D metal originating from the ‘phase stability’
resonance in a quantizing magnetic field. The plotted curves are
described by equations (5) and (15) for F/B0 = 300, B0 = 10 T,
t/h̄�(B0) = 4.

Here, F± = cA±/2π h̄e, A± = A ± δA, and δA =
4π tm⊥

√
1 − s2/v2

0 . This expression agrees with the well
known result of [10] theoretically describing so called giant
quantum oscillations in the ultrasound attenuation in 3D
metals. Sound attenuation oscillations in a Q2D conductor
display a sequence of very sharp peaks separated by regions
of much weaker attenuation resembling those observed in
conventional 3D metals. This is shown in figure 2. The
attenuation peaks are split in two, as presented in the figure.
This happens because the charge carriers belonging to the FS
cross-sections with slightly different areas A+ and A− strongly
contribute to the ultrasound attenuation which is the effect
of the Q2D Fermi surface geometry. We remark that these
‘efficient’ cross-sections do not coincide with those possessing
minimum or maximum areas. Omission of the correction δA
results in disappearance of the splitting (see the solid line in the
figure 2).

Besides the imaginary part, the function Ỹ1 has a
nonzero real part accounting for an extra term in the
oscillating correction to the sound velocity. As follows from
equation (11):

Re Ỹ1 = απ

4

s

v0

∞∑
r=−∞

(−1)r D(r)

×
[

sin

(
2πr F+

B

)
+ sin

(
2πr F−

B

) ]
. (15)

This correction describes quantum oscillations controlled
by the same mechanism as the giant quantum oscillations in
the ultrasound attenuation. The magnetic field dependencies
of the above oscillating terms are presented in figure 3. We
see that both shapes and phases of the oscillations described by
Re Ỹ1 (figure 3) and Ỹ2 (figure 4) differ. Again, the profile of
the solid line in figure 3, results from contributions from the FS
cross-sections overlapping with areas A+ and A−, respectively.
Neglecting the correction δA one obtains a simpler shape of
the oscillations shown as the solid line. A rather complicated
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Figure 4. Quantum oscillating corrections to the velocity of a
longitudinal sound wave traveling along the symmetry axis of a
moderately corrugated Fermi surface of a Q2D metal originating
from charge carriers DOS oscillations in a strong magnetic field. The
curves are plotted using by equations (5) and (13). The relevant
parameters take on the same values as in the previous figure.

pattern of the DOS related oscillations also originates from
the Fermi surface rippling. Actually, the solid line in figure 4
appears as a superposition of contributions from the FS cross-
sections with minimum and maximum areas. The resulting
dependence of the oscillating correction to the speed of sound
wave including both kinds of corrections is shown in figure 5.

Now, we briefly discuss possibilities for an experimental
observation of the predicted features in magnetic quantum
oscillations of high frequency ultrasound velocity and
attenuation in Q2D conductors. We concentrate on the organic
metals for FSs of these materials were studied in numerous
experiments [3, 4]. To estimate the order of v0 we assume
A = 1.31 × 10−49 (kg m s−1)2, m⊥ = 4.5m0 (m0 being the
free electron mass) and (Amax − Amin)/A ∼ 0.04 which is
close to the values reported for a typical Q2D organic metal
β − (ET )2IBr2 [4]. Using these data we may estimate v0

within the adopted model of the charge carriers spectrum
given by equation (1), and we get v0 ∼ 4 × 103 m s−1, and
t/h̄� ∼ 10 at B = 10 T. The obtained approximate value
for the longitudinal velocity is far less than typical values of
the Fermi velocity but no less than the speed of sound in
conventional 3D metals. However, the speed of ultrasound
wave propagating along the FS symmetry axis in a Q2D
organic metal is smaller than in 3D metals due to the weak
connection between adjacent conducting layers. This gives
grounds to believe that the condition v0 < s may be satisfied
in organic metals, and the effects discussed in this work could
be available for experimental observation. One could expect
these effects to occur at high frequencies of the ultrasound
(ql > v0/s) and at low temperatures.

3. Conclusion

In conclusion, in this work we theoretically analyzed magnetic
quantum oscillations in the elastic response of a Q2D metal to
a high frequency ultrasound wave. Within a chosen geometry a

Figure 5. Superposition of the quantum oscillations described by
equations (5), (10) and (11). The relevant parameters take on the
same values as in the figures 3 and 4.

longitudinal ultrasound wave was assumed to travel along the
magnetic field directed in parallel with the axis of symmetry
of the Fermi surface. We showed that both sound velocity and
attenuation reveal quantum oscillations provided that the FS
corrugation is not too weak. The case of moderately strong
Fermi surface warping (t > sp0) is especially interesting.
We showed that in this case the oscillating correction to the
sound velocity includes two terms of different origins and
this is the main result of this work. At low temperatures
(2π2kT < h̄�) the two terms significantly differ in shape
and phase. Also, their periods are slightly different, as follows
from equations (11)–(15). An extra term in the oscillating
correction to the velocity of sound proportional to the function
Ỹ1 appears due to some kind of ‘phase stability’ resonance
occurring when a charge carrier moves along the magnetic field
at the same velocity as the sound wave travels. Therefore,
the relevant quasiparticles are seeing the same phase of the
wave all the while between consecutive collisions, and can
efficiently absorb phonons. So, the above oscillations in
the sound velocity appear due to the same reason as giant
quantum oscillations in the sound attenuation studied in 3D
metals. Overall, the present results enable us to better
understand specific features of magnetic quantum oscillations
in the elastic response of Q2D conductors, and they could
be easily generalized to describe 3D metals. We remark
that the inequality s

v0

√
μ/h̄� > 1 is probably violated in

good metals. Therefore, the expressions for the oscillating
corrections to the sound velocity unrelated to ‘phase stability’
resonance may not closely follow in shape and phase the
DOS quantum oscillations. We discuss these issues in the
appendix.
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Appendix

Expressions for the oscillating terms in the function Y
appropriate for a conventional 3D metal are derived in earlier
works (see [15]). Here, we give these expressions without
derivation assuming for simplicity that the FS possesses a
spherical shape. Then equation (8) takes on the form:

Ỹ = 1
2

∑
σ

∞∑
r=1

∫
dE

∫ pmax(E)

−pmax(E)

dpz

× f σ (E, pz) − f σ (E, pz − h̄q)

Eσ (pz − h̄q) − Eσ (pz) + h̄ω + i/h̄τ

× cos

(
r
λ2

h̄2
Aσ (E, pz)

)
. (16)

Here, pmax(E) is the maximum value of the longitudinal
momentum pz at a given energy E .

Assuming γ = √
2μ/h̄� 	 1, and taking into account

the main terms in the expansion of the function Ỹ in powers of
the small parameter γ −1 we obtain:

Ỹ1 = 1

2q R

∞∑
r=1

(−1)r

r
D(r)

×
{

exp

[
−π irγ 2

(
1 −

[
u + h̄q

2pF

]2)]

+ u − h̄q
2 pF∣∣u − h̄q
2 pF

∣∣ exp

[
−π irγ 2

(
1 −

[
u − h̄q

2pF

]2)]}
, (17)

where u = vz/vF, R is the cyclotron radius and vF, pF

are the Fermi velocity and Fermi momentum for electrons,
respectively. The correction Ỹ2 may be written in the form:

Ỹ2 = 1

2γ

∞∑
r=1

(−1)r

√
r

D(r)

{
exp

(
irγ 2 − i

π

4

)
G−

r

+ exp
(

− irγ 2 + i
π

4

)
G+

r

}
(18)

where

G±
r = ± i

2

∫ ∞

0
exp(±iy) exp

( −
√

2πrγ 2u2 y
)

dy. (19)

When the frequency of the sound wave is not too high we may
expect the ratio h̄q/pF to take on values much smaller than
s/vF. Under this assumption we may expand the exponents in
the equation (17) in powers of a small parameter h̄ω/m⊥s2,
and we get

Re Ỹ1 = πu

4

∞∑
r=−∞

(−1)r D(r) sin

[
2πr Fmax

B

(
1 − δA

Amax

)]

(20)

Im Ỹ1 = −πu

4

×
∞∑

r=−∞
(−1)r D(r) cos

[
2πr Fmax

B

(
1 − δA

Amax

)]
. (21)

Here, δA is the difference between Amax and the cross-
sectional area corresponding to the ‘effective’ FS cross-section

where the charge carriers with vz = s do belong. In the
considered case of a spherical FS the correction δA/Amax =
u2. To compare equations (14) and (15) with the presented
results appropriate for a 3D metal, we rewrite the expressions
for A± as follows:

F+ = Amin

(
1 + δA

Amin

)
, (22)

F− = Amax

(
1 − δA

Amax

)
, (23)

where δA = 4π tm⊥(1 −
√

1 − s2/v2
0). Substituting these

expressions into equations (14) and (15) we see that the
terms including F− have the form similar to that given by
equations (20) and (21). The resemblance becomes closer
assuming that s/v0 � 1 as it occurs in regular metals. In this
case δA ≈ 2πm⊥ts2/v2

0 . For more realistic models of a 3D
metal when FS possesses cross-sections with both maximum
and minimum areas the term similar to that including F− will
appear in equations (20) and (21), as well. It is worthwhile to
mention that similarity in the expressions for the correction Ỹ1

appropriate for 3D and Q2D conductors occurs irrespective of
the value of s

vF

√
μ/h̄�.

To compare the expressions (18) and (19) with
the corresponding result for Q2D conductors given by
equation (13), one must keep in mind that equation (13)
is derived assuming s

v0

√
μ/h̄� > 1. Under the similar

assumption γ u > 1 one may approximate the functions G±
using asymptotic expressions for Fresnel integrals and get
G± ≈ 1. So, we have

Ỹ2 = 1

γ

∞∑
r=1

(−1)r

√
r

D(r) cos

(
2πr Fmax

B
− π

4

)
. (24)

We see that the main difference between Q2D and 3D
conductors is given by the small factor (

√
h̄�/8π2t and γ −1,

respectively) determining the order of oscillations magnitudes.
To illustrate the transformation from the Q2D to the 3D case
we may write

√
h̄�

8π2t
= 1

πγ

√
A

Amax − Amin
. (25)

When the FS corrugation becomes significant, so that Amax −
Amin ∼ A, we could treat the considered conductor as
a 3D metal with the corresponding order of magnitude of
magnetic quantum oscillations of charge carriers DOS, and
related to DOS characteristics. We remark that the inequality
(s/v0)

√
μ/h̄� > 1 hardly could be satisfied in good metals

with nearly spherical Fermi surfaces. However, oscillating
terms of the form (24) could appear in the magnetoacoustic
response of a 3D metal as contributions from small segments
of a complicated FS including several sheets.
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